186,392 research outputs found

    Dynamic response and stability of a composite prop-fan model

    Get PDF
    Results are presented for blade response and stability during wind tunnel tests of a 62.2 cm diameter model of a prop-fan, advanced turboprop, with swept graphite/epoxy composite blades. Measurements of dynamic response were made with the rotor mounted on an isolated nacelle, with varying tilt for nonuniform inflow, at flow speeds from 0.36 to 0.9 Mach number. The blade displayed no instabilities over the operating range tested, up to 0.9 Mach number and 10,000 RPM. Measurements are compared with those for other prop-fan models of both solid metal and graphite composite construction. The swept composite blade had less response than an unswept composite blade. Composite blades had more response than metal blades. Measurements are compared with theoretically based predictions. The 1-P blade response was significantly overpredicted using unimproved methods and somewhat overpredicted using improved methods. Unexpectedly high 2-P strain levels were measured and suggest the presence of nonlinear effects on blade response

    Fermi-Bose mixture in mixed dimensions

    Get PDF
    One of the challenging goals in the studies of many-body physics with ultracold atoms is the creation of a topological px+ipyp_{x} + ip_{y} superfluid for identical fermions in two dimensions (2D). The expectations of reaching the critical temperature TcT_c through p-wave Feshbach resonance in spin-polarized fermionic gases have soon faded away because on approaching the resonance, the system becomes unstable due to inelastic-collision processes. Here, we consider an alternative scenario in which a single-component degenerate gas of fermions in 2D is paired via phonon-mediated interactions provided by a 3D BEC background. Within the weak-coupling regime, we calculate the critical temperature TcT_c for the fermionic pair formation, using Bethe-Salpeter formalism, and show that it is significantly boosted by higher-order diagramatic terms, such as phonon dressing and vertex corrections. We describe in detail an experimental scheme to implement our proposal, and show that the long-sought p-wave superfluid is at reach with state-of-the-art experiments.Comment: 12 pages, 6 figures, 2 tables and supplementary materia

    Unpulsed UBV Optical Emission from the Crab Pulsar

    Full text link
    Based on observations of the Crab pulsar using the TRIFFID high speed imaging photometer in the UBV bands using the Special Astrophysical Observatory's 6m telescope in the Russian Caucasus, we report the detection of pronounced emission during the so-called `off' phase of emission. Following de-extinction, this unpulsed component of emission is shown to be consistent with a power law with an exponent of alpha = -0.60 +/- 0.37, the uncertainty being dominated by the error associated with the independent CCD photometry used to reference the TRIFFID data. This suggests a steeper power law form than that reported elsewhere in the literature for the total integrated spectrum, which is essentially flat with alpha ~ 0.1, although the difference in this case is only significant at the ~ 2 sigma level. Deeper reference integrated and TRIFFID phase-resolved photometry in these bands in conjunction with further observations in the UV and R region would constrain this fit further.Comment: 26 pages, 2 figures, uses aasms4.sty, accepted for publication in the Astrophysical Journa

    A magnetogasdynamic power generation study third quarterly progress report

    Get PDF
    Calculations of preionized plasma flow with finite recombination rate - magnetohydrodynamic power generator stud

    Low-TT Phononic Thermal Conductivity in Superconductors with Line Nodes

    Full text link
    The phonon contribution to the thermal conductivity at low temperature in superconductors with line nodes is calculated assuming that scattering by both nodal quasiparticles and the sample boundaries is significant. It is determined that, within the regime in which the quasiparticles are in the universal limit and the phonon attenuation is in the hydrodynamic limit, there exists a wide temperature range over which the phonon thermal conductivity varies as T2T^2. This behaviour comes from the fact that transverse phonons propagating along certain directions do not interact with nodal quasiparticles and is thus found to be required by the symmetry of the crystal and the superconducting gap, independent of the model used for the electron-phonon interaction. The T2T^2-dependence of the phonon thermal conductivity occurs over a well-defined intermediate temperature range: at higher TT the temperature-dependence is found to be linear while at lower TT the usual T3T^3 (boundary-limited) behaviour is recovered. Results are compared to recent measurements of the thermal conductivity of Tl2201, and are shown to be consistent with the data.Comment: 4 page

    Temperature perturbation model of the opto-galvanic effect in CO2-laser discharges

    Get PDF
    A detailed discharge model of the opto-galvanic effect in molecular laser gas mixtures is developed based on the temperature perturbation or discharge cooling mechanism of Smith and Brooks (1979). Excellent agreement between the model and experimental results in CO2 laser gas mixtures is obtained. The model should be applicable to other molecular systems where the OGE is being used for laser stabilisation and as a spectroscopic tool

    Merit - An evaluation tool for 100% renewable energy provision

    Get PDF
    Islands represent an interesting challenge in terms of energy supply. A great deal of work has been carried out to look at specific aspects of this issue on different islands. Unfortunately, results from one study cannot be easily applied to other islands due to island-specific resources and energy-use profiles. A quantitative evaluation tool (MERIT) is presented here, which is able to match half-hourly energy demands (heat, electricity, hot water and transport) with local supplies. The program examines the energy balance on any scale, from an individual building through to an entire country, thereby providing a powerful and generic aid to decision making. This paper demonstrates the generality and usefulness of MERIT by using it to analyse the options for creating an energy-autonomous community on a typical, small island off the west coast of Scotland. Results are presented showing the feasibility of accomplishing 100% renewable provision on this island using available local resources
    • …
    corecore